Table II

Successive Division of 10 non-Fibonacci Numbers by ϕ										
\div by	142	155	297	452	749	1201	1950	3151	5101	8252
		1.091	1.916	1.522	1.657	1.603	1.624	1.616	1.619	1.618
ф	87.761	95.80	183.556	279.351	462.907	742.259	Two random numbers that are not Fibonacci Numbers - 142 and 155 were added together to start the sequence. The sum - 297 -was added to the immediately previous number - 155 - to generate the next number sum, and so forth, i.e. 155 + $297=452$.			
ϕ^{2}	54.239	59.205	113.444	72.649	286.092	458.741				
ϕ^{3}	33.522	36.590	70.112	106.703	76.815	283.518				
ϕ^{4}	20.718	22.614	43.332	65.946	109.278	175.224				
ϕ^{5}	12.804	13.976	26.780	40.757	67.537	108.294				
ϕ^{6}	7.913	8.638	16.551	25.189	41.740	66.929				
ϕ^{7}	4.891	5.338	10.229	15.568	25.797	41.365	The 1st Row below the header is the result of dividing that number in the header above by its immediately previous number. The values approach $\phi=1.618$ just as in the Fibonacci Number sequence.			
ϕ^{8}	3.023	3.299	6.322	9.621	15.943	25.565				
ϕ^{9}	1.868	2.039	3.907	5.946	9.854	15.80				
ϕ^{10}	1.154	1.260	2.415	3.675	6.090	9.765				
ϕ^{11}		0.779	1.492	2.271	3.764	6.035				
ϕ^{12}			0.922	1.404	2.326	3.730	This is TRUE for any two numbers: they will always converge to a ratio approaching ϕ. It is NOT unique to the Fibonacci Numbers.			
ϕ^{13}					1.438	2.305				
ϕ^{14}						1.425				
							However, the Fibonacci Numbers do converge to ϕ quicker AND they regenerate themselves with successive divisions by ϕ, as shown in the previous Table.			
Table	$\begin{aligned} & \phi=1.61803 \\ & \gamma=\phi / \alpha=1.618 \end{aligned}$ found in the	$\begin{aligned} & \sqrt{ } \phi=1.17 \\ & 3782=1 . \end{aligned}$ ter Chart	$\gamma^{3}=$ These are old $\boldsymbol{\alpha}$ va	${ }^{3}=\phi$ riginal ph re in plac	$\gamma^{2}=1.37$ $\boldsymbol{\alpha}$ and γ re	ships				
II	While the ratios of random, non-Fibonacci numbers added sequentially resolve to phi (ϕ), successive divisions by phi (ϕ) - as shown in each Column - do NOT re-generate themselves, nor do they resolve to $\boldsymbol{\alpha}$ - or γ-like number values like the Fibonacci does.						The random numbers do NOT regenerate themselves.			

