Table 7: s=18
Table 7: Primitive Pythagaorean Triples (PPT) with s=18

Every $\mathbf{s}=18$ PPT can be generated from the initial 3-4-5 PPT. Switching the " \boldsymbol{s} " \& " \boldsymbol{f} " pair-sets gives the $\mathbf{s}=\mathbf{2 , 8 , 1 8 , 3 2 , \ldots \text { . EVEN PPTs and }}$ from the $\mathbf{s}=\mathbf{2}$, the ODD $\mathbf{s}=9,25,49,81, \ldots$ can be generated the same way. ALL PPTs are related back to the 3-4-5 PPT! Disregard the grayed out rows of $\mathbf{s}=\mathbf{1}, 4,9,16$ and all non-Primitive Pythagorean Triples (nPPT) except for the \mathbf{r} and $\mathbf{r}^{2} / \mathbf{2}$ columns as they are shown to show how the specific $\mathbf{s}=18$ pattern is formed. Refer to Table $3(\mathbf{s}=2)$ to see how the $\mathbf{s}=18$ PPTs are a derivative. Notice that the spacing between subsequent PPTs now skips not to the next PPT but to the one thereafter, i.e. every other one. If " c " $=73$, it's " p " value skips past the very next PPT to the one thereafter, e.i. to the " c " $=205$ row. This is a consistent pattern for all $\mathbf{s}=18$. While $\mathbf{s}=\mathbf{2}$ pointed to the next PPT row, $\mathbf{s}=18$ points to the second next row! As all subsequently larger s-sets will show, each has a similar skip pattern that is a consistent multiplier for that given s-set!
Another key pattern is that the " t " values for all PPTs follow a the (1,4,9,16),25,36,49,64,81,100,121,144,169, (in BOLD) sequence - like that of the PD - skipping all those divisible by 4 or 9 . An EVEN + ODD or ODD + EVEN pattern for "a,b" and "a2,b2" and "s,t" values holds true. Patterns described typically begin with the first $\mathbf{s}=9$ PPT row. Some pattern values also run through the other nPPT and/or $\mathbf{s} \neq 9$ rows. Notice the s=18 pattern for PPTs runs 1 (BLUE)-1-1 (BLUE)-1-1-1-1 (BLUE)-1-1 (BLUE)-1-1-1-1 (BLUE)-1-,...

Copyright@2014, Reginald Brooks, Brooks Design.

