BBS-ISL Matrix

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
1	1	3	8	15	24	35	48	63	80) 99	120	1431	168	195	22	25	5288	8323	360	
2				12	21	32	45	60	77	77	1117					252				
3	8	5	${ }_{9}$		16	27	40	55	72	91	112					247	280			
4	15	12	7	16	9	20	33	48	65	84	105				209	24027	273			
5	24	21	16	9	25	11	24	39	56	75	96					231	27			
6	35	32	27	20	11	36	13	28	45	64	85	10				220				
7	48	45	40	33	24	13	49	15	32	51	72	95				2072				
8	63	60	55	48	39	28	15	64	17	1736	57	80				192	,			
9	80	77	72	65	56	45	32	17	81	19	10	63	88		144	175	2082			
10	99	96	91	84	75	64	51	36	19	100	021	44	69	96		156				
	1201	1171	1121	105	96	85	72	57	40	21	121	23	48	75		13	168			
	1431			128	119	108	95	80	63	44	23		25	52	81		12			
								5	588	69	48	25	169	27	56	87	120			
	1951								15	596	75	52	27	196	29	60	93			
	24									125		81	56	29	225	31	64	99	13	
	5525										6135		87	60		256		68		
														93	64		289		72	
	,													128	89	68				76
	迷																			
	3993																			

Column(C) \& Row(R) Coordinates $=\log p$ rectangle $\mathrm{p}=\log (2 \cdot x) / \log (2)=\mathrm{R}=\mathrm{x}=4 \quad \mathrm{y}=\mathrm{x}-1=\mathrm{C}$ and $\mathrm{x}^{\wedge} 2=4^{\wedge} 2=16$

 $p=\log \left(x^{\wedge} 2\right) / \log (2)+1=z$ and z is found at intersection of $C=3 \& R=4$, as $C+R=z$ $R \cdot z=P N=x z=4 \cdot 7=28$ and PNS+CR=Perfect Number Square + Complement Rectangle $=$ $x^{\wedge} 2+x y=4^{\wedge} 2+3 \cdot 4=16+12=28=P N$ works for TRUE, Active "containers"