BBS-ISL Matrix

To find the Row/Column placement of any Inner Grid (IG) number (\#):

1. find Factors
2. add Factors, divide by 2 = Row \#
3. confirm by determining Col \#

* a. divide IG \# by larger Factor (or simply take the smaller Factor)
* b. subtract the resulting quotient from the Row \# = Col \#
* c. verify by finding the Δ between the two PD \#s

Ex: 33 (Two Factor Sets, example for Factor Set: 3,11 only*)

1. Factors: $3,11-(1,33)$
2. Row: $3+11=14,14 \div 2=7$ = Row 7
3. Column - confirm \& verify:

- a. Divide: $33 \div 11=3$
- b. Subtract: 7-3=4=Col 4
- c. verify: $7^{2}-4^{2}=49-16=33$

Thereffore: IG\# 33 appears 2 times on the IG at:

- Row 7, Col 4
- Row 17, Col 16(*see note @ bottom)

Ex: 96 (Five Factor Sets, example for four Factor Sets only)

1. Factors: $2,48-3,32-4,24-8,12-(1,96)$
2. Row:

- $2+48=50,50 \div 2=25=$ Row 25
- $3+32=35,35 \div 2=17.5=$ RowXXXX (Is NOT whole integer \#)
- $4+24=28,28 \div 2=14=$ Row 14
- $8+12=20,20 \div 2=10=$ Row 10

3. Column - confirm \& verify:

- a. Divide:
- $96 \div 48=2$
- xxx skip because not whole integer \#
- $96 \div 24=4$
- $96 \div 12=8$
- b. Subtract:
- $25-2=23=\operatorname{Col} 23$
- xxx
- $14-4=10=$ Col 10
- $10-8=2=\mathrm{Col} 2$
- c. verify:
- $25^{2}-23^{2}=625-529=96$
- xxx
- $14^{2}-10^{2}=196-100=96$
- $10^{2}-2^{2}=100-4=96$

Therefore: IG\# 96 appears 4 times on the IG. The three examples
at:

- Row 25, Col 23
- Row/Col XXX skip because not whole integer \#)
- Row 14, Col 10
- Row 10, Col 2
- (*see note @ bottom re: 1,96)

SIMPLIFICATION

```
SIMPLIFICATION;
    1. &sum; Factors \div 2 = Row #
    2. Row # - Factor # = Col #
    3. verify PD - PD = IG#
```


Ex: 96 (Factors: 1,96-2,48-3,32-4,24-8,12)

Factors: 2,48

1. \sum Factors $\div 2$ = Row \#:

- $(2+48) \div 2=$ Row 25

2. Row \#- Factor \# = Col \#:

- 25-2 = Column 23

3. verify PD - PD = IG\#:

- $25^{2}-23^{2}=625-529=96$

Thereffore: IG\# 96 appears on the IG at:

- Row 25, Col 23

Factors: 3,32

1. \sum Factors $\div 2$ = Row \#:

- xxx (no IG\# with this Factor Set)

Factors: 4,24

1. \sum Factors $\div 2$ = Row \#:

- $(4+24) \div 2=$ Row 14

2. Row \#- Factor \# = Col \#:

- 14-4 = Column 10

3. verify PD - PD $=\mathrm{IG} \#$:

- $14^{2}-10^{2}=196-100=96$

Therefore: IG\# 96 appears on the IG at:

- Row 14, Col 10

Factors: 8,12

1. \sum Factors $\div 2=$ Row \#:

- $(8+12) \div 2=$ Row 10

2. Row \#- Factor \# = Col \#:

- 10-8 = Column 2

3. verify PD - PD = IG\#:

- $10^{2}-2^{2}=100-4=96$

Therefore: IG\# 96 appears on the IG at:

- Row 10, Col 2

Ex: 1125

Factors: (1, 1125)
Factors: $(3,375)$
Factors: $(5,225)$
Factors: $(9,125)$

Factors: (15, 75)

Factors: $(25,45)$

1. \sum Factors $\div 2$ = Row \#:

- $(1+1125) \div 2=$ Row 563
- $(3+375) \div 2$ = Row 189
- $(5+225) \div 2=$ Row 115
- $(9+125) \div 2$ = Row 67
- $(15+75) \div 2=$ Row 45
- $(25+45) \div 2$ = Row 35

2. Row \#-Factor \# = Col \#:

- Row 563-1 = Col 562
- Row 189-3= Col 186
- Row 115-5 = Col 110
- Row 67-9 = Col 58
- Row 45-15 = Col 30
- Row 35-25 = Col 10

3. verify by PD - PD $=1 \mathrm{G} \#$:

- $563^{2}-562^{2}=316,969-315,844=1125$
- $189^{2}-186^{2}=35,721-34,596=1125$
- $115^{2}-110^{2}=13,225-12,100=1125$
- $67^{2}-58^{2}=4,489-3,364=1125$
- $45^{2}-30^{2}=2,025-900=1125$
- $35^{2}-10^{2}=1,225-100=1125$

Therefore: IG\# $\mathbf{1 1 2 5}$ appears $\mathbf{6}$ times on the IG at:

- Row 563, Col 562
- Row 189, Col 186
- Row 115, Col 110
- Row 67, Col 58
- Row 45, Col 30
- Row 35, Col 10
*The Factor Set that includes $1, X$ where $X=$ the IG\#, ALWAYS lies on the 1st Parallel Diagonal (3,5,7,..) if ODD; and,if $X=E V E N$ IG\#, it will NOT be on the matrix grid, as $1+E V E N ~ \# ~=~ O D D ~$ \#,
e.i. IG\# 33 using Factor Set 1, 33 resolves to Row 17 Col 16, while IG\# 8 does NOT have a Row/Col presence with Factor Set 1,8 as it does NOT resolve to a whole number.

Copyright © 2016, Reginald Brooks, Brooks Design. All rights reserved.

